84 research outputs found

    ACINO: Second year report on dissemination and communication activities

    Get PDF
    This ACINO deliverable presents the communication and dissemination activities performed by the consortium during the first two years of the project. We have communicated using our website, Twitter account and by various communication actions: The website saw over 3000 unique visitors during the first year and over 4000 during the second year; The consortium Twitter account had 49 followers at the end of the first year and 80 at the end of the second year. We posted 50 tweets during the first year and 40 more during the second year; We also held a press release and an interview in a magazine during the first year, and had three more similar communication actions during the second year. The dissemination activities have been composed of participation in public events where the goals and concepts of ACINO were presented via publications, presentation, workshops, courses and demonstrations. Overall, over forty different dissemination activities have been performed: An article has been published in peer-reviewed, open access Journal of Green Engineering; Eighteen articles have been published in conferences: four during the first year and fourteen during the second. One of them was a post-deadline and six were invited papers; We have co-organised three workshops: the Workshop on Network Function Virtualization and Programmable Networks at EUCNC 2015, the first Workshop on Multi-Layer Network Orchestration (NetOrch) at ICTON 2016 and the stand-alone ONOS/CORD workshop; We have held 16 talks, tutorial, courses and demonstrations; Consortium members have won two prizes for work related to ACINO: a team of developers won the 3rd prize of the ONOS Build Hackathon, and TelefĂłnica won the Best SDN-NFV solution award at the LTE and 5G World conference by presenting a solution in which Sedona Systems was involved; We have contributed to six IETF standardisation documents and done some implementation and test of these standards. We have contributed to two open source projects: the NetPhony and ONOS controllers, with the implementation of main features being accepted and merged to the core code of these open source projects. Finally, the project has devised detailed plans for its dissemination activities for the last year of the project. We have: Confirmed plans for the organisation of a workshop, the second edition of the NetOrch workshop, co-located with the ICTON conference; A solid plan for continued dissemination in conferences (already five accepted conference papers, five talk invitations and a list of conferences of interest) and in peer-reviewed journals, with one article accepted for publication in the Journal of Lightwave Technology, two articles under review and plans for four more; Some more planned contribution to open source projects

    Technologies for Cost-Effective UDWDM-PONs

    Get PDF
    New technologies for ultradense WDM-PON (udWDM-PON), enabled by coherent techniques and low-cost devices, are developed for an efficient utilization of the optical spectrum, revealing that the 'Wavelength-to-the-User' concept can be feasible. In this paper, an udWDM-PON with only 6.25-GHz channel spacing is implemented with conventional DFB lasers, for a splitter-based PON infrastructure with 256 ONUs. The results of the analysis of udWDM access network architecture with respect to their associated complexity, cost, and migration scenarios, exhibit the potential for higher aggregate throughput, higher split ratios, and node consolidation, when compared to competing technologies

    Simple intradyne PSK system for UDWDM-PON

    Get PDF
    A homodyne coherent receiver for ultra-dense WDM-PON with off the shelf components is presented. It consists of a conventional DFB, phase switched clock signal, an optical coupler instead of a 90Âş hybrid, balanced photodetectors and digital signal processing. The phase swing for a DBPSK signal was optimized and the performance was experimentally evaluated in terms of the sensitivity for several laser linewidths. The acceptable frequency offset and clock time delay was also assessed. The results exhibit a sensitivity of -48 dBm at a BER of 10-3 and indicate a high tolerance to phase noise.Peer ReviewedPostprint (published version

    P5: Event-driven Policy Framework for P4-based Traffic Engineering

    Get PDF
    We present P5, an event-driven policy framework that allows network operators to realize end-to-end policies on top of P4-based data planes in an intuitive and effective manner. We demonstrate how P5 adheres to a service-level agreement (SLA) by applying P4-based traffic engineering with latency constraints

    Network slicing architecture for SDM and analog-radio-over-fiber-based 5G fronthaul networks

    Get PDF
    \u3cp\u3eThe blueSPACE project focuses on the study of innovative technologies to overcome the limitations of current fronthaul networks. The key technology proposed is space-division multiplexing, which makes it possible to increase the capacity available in conventional single-mode fibers, effectively encompassing this capacity to the forecasted bandwidth demands imposed by 5G mobile communications. In this paper, we present the innovative optical fronthaul infrastructure proposed in the project and the tailored extensions to the European Telecommunications Standards Institute network function virtualization management and orchestration architecture for this enhanced infrastructure together with practical implementation considerations.\u3c/p\u3

    Transition technologies towards 6G networks

    Full text link
    [EN] The sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10 degrees beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.This work was partially funded by the blueSPACE and 5G-PHOS 5G-PPP phase 2 projects, which have received funding from the European Union's Horizon 2020 programme under Grant Agreements Number 762055 and 761989. D. PerezGalacho acknowledges the funding of the Spanish Science Ministry through the Juan de la Cierva programme.Raddo, TR.; Rommel, S.; Cimoli, B.; Vagionas, C.; PĂ©rez-Galacho, D.; Pikasis, E.; Grivas, E.... (2021). Transition technologies towards 6G networks. EURASIP Journal on Wireless Communications and Networking. 2021(1):1-22. https://doi.org/10.1186/s13638-021-01973-91222021

    Experimental demonstration of advanced service management in SDN/NFV Fronthaul Networks deploying ARoF and PoF

    Get PDF
    We demonstrate two advanced services deployed in a novel SDN/NFV optical fronthaul network combining analog radio over fiber (ARoF) and power over fiber (PoF); vertical service management for virtual content delivery networks (vCDNs), and user mobility and remote optical power management for femto cells
    • …
    corecore